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Abstract 

This paper describes capabilities, evolution, performance, and applications of the Global 
Arrays (GA) toolkit. GA was created to provide application programmers with an interface 
that allows them to distribute data while maintaining the type of global index space and 
programming syntax similar to what is available when programming on a single processor. 
The goal of GA is to free the programmer from the low level management of communication 
and allow them to deal with their problems at the level at which they were originally 
formulated. At the same time, compatibility of GA with MPI enables the programmer to take 
advantage of the existing MPI software/libraries when available and appropriate. The variety 
of applications that have been implemented using Global Arrays attests to the attractiveness 
of using higher level abstractions to write parallel code. 
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1. Introduction 
The two predominant classes of programming models for MIMD concurrent computing are 
distributed memory and shared memory. Both shared memory and distributed memory 
models have advantages and shortcomings. Shared memory model is much easier to use but it 
ignores data locality/placement. Given the hierarchical nature of the memory subsystems in 
modern computers this characteristic can have a negative impact on performance and 
scalability. Careful code restructuring to increase data reuse and replacing fine grain 
load/stores with block access to shared data can address the problem and yield performance 
for shared memory that is competitive with message-passing [1]. However, this performance 
comes at the cost of compromising the ease of use that the shared memory model advertises. 
Distributed memory models, such as message-passing or one-sided communication, offer 
performance and scalability but they are difficult to program.  

The Global Arrays toolkit [2-4] attempts to offer the best features of both models. It 
implements a shared-memory programming model in which data locality is managed by the 
programmer. This management is achieved by calls to functions that transfer data between a 
global address space (a distributed array) and local storage (Figure 1). In this respect, the GA 
model has similarities to the distributed shared-memory models that provide an explicit 
acquire/release protocol e.g., [5]. However, the GA model acknowledges that remote data is 
slower to access than local data and allows data locality to be specified by the programmer 
and hence managed. GA is related to the global address space languages such as UPC [6], 
Titanium[7], and, to a lesser extent, Co-Array Fortran1 [8]. In addition, by providing a set of 
data-parallel operations, GA is also related to data-parallel languages such as HPF [9], ZPL 
[10], and Data Parallel C [11]. However, the Global Array programming model is 
implemented as a library that works with most languages used for technical computing and 
does not rely on compiler technology for achieving parallel efficiency. It also supports a 
combination of task- and data-parallelism and is available as an extension of the message-
passing (MPI) model. The GA model exposes to the programmer the hierarchical memory of 
modern high-performance computer systems [12], and by recognizing the communication 
overhead for remote data transfer, it promotes data reuse and locality of reference. Virtually 
all the scalable architectures possess non-uniform memory access characteristics that reflect 
their multi-level memory hierarchies. These hierarchies typically comprise processor 
registers, multiple levels of cache, local memory, and remote memory. Over time, both the 
number of levels and the cost (in processor cycles) of accessing deeper levels has been 
increasing. It is important for any scalable programming model to address memory hierarchy 
since it is critical to the efficient execution of scalable applications. 

Before the DoE-2000 ACTS program was established [13, 14], the original GA package [2-4] 
offered basic one-sided communication operations, along with a limited set of collective 
operations on arrays in the style of BLAS [15]. Only two-dimensional arrays and two data 
types were supported. The underlying communication mechanisms were implemented on top 
of vendor specific interfaces. In the course of ten years, the package has evolved substantially 
and the underlying code has been completely rewritten. This included separation of the GA 

                                                 
1 CAF does not provide explicit mechanisms for combining distributed data into a single shared object. It 
supports one-sided access to so called “co-arrays”, arrays defined on every processor in the SPMD program. 
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internal one-sided communication engine from the high-level data structure. A new portable, 
general, and GA-independent communication library called ARMCI was created [16]. New 
capabilities were later added to GA without the need to modify the ARMCI interfaces. The 
GA toolkit evolved in multiple directions:  

• Adding support for a wide range of data types and virtually arbitrary array ranks (note 
that the Fortran limit for array rank is seven). 

• Adding advanced or specialized capabilities that address the needs of some new 
application areas, e.g., ghost cells or operations for sparse data structures. 

• Expansion and generalization of the existing basic functionality. For example, mutex 
and lock operations were added to better support the development of shared memory 
style application codes. They have proven useful for applications that perform 
complex transformations of shared data in task parallel algorithms, such as 
compressed data storage in the multireference configuration interaction calculation in 
the COLUMBUS package [17]. 

• Increased language interoperability and interfaces. In addition to the original Fortran 
interface, C, Python, and a C++ class library were developed. These efforts were 
further extended by developing a Common Component Architecture (CCA) 
component version of GA. 

• Developing additional interfaces to third party libraries that expand the capabilities of 
GA, especially in the parallel linear algebra area. Examples are ScaLAPACK [18] and 
SUMMA [19]. More recently, interfaces to the TAO optimization toolkit have also 
been developed [20]. 

• Developed support for multi-level parallelism based on processor groups in the 
context of a shared memory programming model, as implemented in GA[21, 22]. 
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These advances generalized the capabilities of the GA toolkit and expanded its appeal to a 
broader set of applications. At the same time the programming model, with its emphasis on a 
shared memory view of the data structures in the context of distributed memory systems with 
a hierarchical memory, is as relevant today as it was in 1993 when the project started. This 
paper describes the characteristics of the Global Arrays programming model, capabilities of 
the toolkit, and discusses its evolution. In addition, performance and application experience 
are presented. 

2. The Global Arrays Model 
The classic message-passing paradigm of parallel programming not only transfers data but 
also synchronizes the sender and receiver. Asynchronous (nonblocking) send/receive 
operations can be used to diffuse the synchronization point, but cooperation between sender 
and receiver is still required. The synchronization effect is beneficial in certain classes of 
algorithms, such as parallel linear algebra, where data transfer usually indicates completion of 
some computational phase; in these algorithms, the synchronizing messages can often carry 
both the results and a required dependency. For other algorithms, this synchronization can be 
unnecessary and undesirable, and a source of performance degradation and programming 
complexity. The MPI-2 [23] one-sided communication relaxes the synchronization 
requirements between sender and receiver while imposing new constraints on progress and 
remote data access rules that make the programming model more complicated than with other 
one-sided interfaces [24, 25]. Despite programming difficulties, the message-passing memory 
paradigm maps well to the distributed-memory architectures deployed in scalable MPP 
systems. Because the programmer must explicitly control data distribution and is required to 
address data-locality issues, message-passing applications tend to execute efficiently on such 

Figure 1: Dual view of GA data structures (left). Any part of GA data can be accessed independently by 
any process at any time (right). 
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systems. However, on systems with multiple levels of remote memory, for example networks 
of SMP workstations or computational grids, the message-passing model’s classification of 
main memory as local or remote can be inadequate. A hybrid model that extends MPI with 
OpenMP attempts to address this problem but is very hard to use and often offers little or no 
advantages over the MPI-only approach [26, 27]. 

In the shared-memory programming model, data is located either in “private” memory 
(accessible only by a specific process) or in “global” memory (accessible to all processes). In 
shared-memory systems, global memory is accessed in the same manner as local memory. 
Regardless of the implementation, the shared-memory paradigm eliminates the 
synchronization that is required when message-passing is used to access shared data. A 
disadvantage of many shared-memory models is that they do not expose the NUMA memory 
hierarchy of the underlying distributed-memory hardware [12]. Instead, they present a flat 
view of memory, making it hard for programmers to understand how data access patterns 
affect the application performance or how to exploit data locality. Hence, while the 
programming effort involved in application development tends to be much lower than in the 
message-passing approach, the performance is usually less competitive.  

The shared memory model based on Global Arrays combines the advantages of a distributed 
memory model with the ease of use of shared memory. It is able to exploit SMP locality and 
deliver peak performance within the SMP by placing user's data in shared memory and 
allowing direct access rather than through a message-passing protocol. This is achieved by 
function calls that provide information on which portion of the distributed data is held locally 
and the use of explicit calls to functions that transfer data between a shared address space and 
local storage. The combination of these functions allows users to make use of the fact that 
remote data is slower to access than local data and to optimize data reuse and minimize 
communication in their algorithms. Another advantage is that GA, by optimizing and moving 
only the data requested by the user, avoids issues such as false sharing, data coherence 
overheads, and redundant data transfers present in some software-based distributed shared 
memory (DSM) solutions [28-30]. These issues also affect performance of OpenMP programs 
compiled to use DSM [31].  

GA allows the programmer to control data distribution and makes the locality information 
readily available to be exploited for performance optimization. For example, global arrays can 
be created by 1) allowing the library to determine the array distribution, 2) specifying the 
decomposition for only one array dimension and allowing the library to determine the others, 
3) specifying the distribution block size for all dimensions, or 4) specifying an irregular 
distribution as a Cartesian product of irregular distributions for each axis. The distribution and 
locality information is always available through interfaces to query 1) which data portion is 
held by a given process, 2) which process owns a particular array element, and 3) a list of 
processes and the blocks of data owned by each process corresponding to a given section of 
an array. 

The primary mechanisms provided by GA for accessing data are block copy operations that 
transfer data between layers of memory hierarchy, namely global memory (distributed array) 
and local memory. Further extending the benefits of using blocked data accesses, copying 
remote locations into contiguous local memory can improve uniprocessor cache performance 
by reducing both conflict and capacity misses [32]. In addition, each process is able to access 
directly data held in a section of a Global Array that is locally assigned to that process and on 
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SMP clusters sections owned by other processes on the same node. Atomic operations are 
provided that can be used to implement synchronization and assure correctness of an 
accumulate operation (floating-point sum reduction that combines local and remote data) 
executed concurrently by multiple processes and targeting overlapping array sections. 

GA is extensible as well. New operations can be defined exploiting the low level interfaces 
dealing with distribution, locality and providing direct memory access 
(nga_distribution, nga_locate_region, nga_access, nga_release, 
nga_release_update) [33]. These, for example, were used to provide additional linear 
algebra capabilities by interfacing with third party libraries e.g., ScaLAPACK [18].  

2.1 Memory consistency model 

In shared memory programming, one of the issues central to performance and scalability is 
memory consistency. Although the sequential consistency model [34] is straightforward to 
use, weaker consistency models [35] can offer higher performance on modern architectures 
and they have been implemented on actual hardware. The GA approach is to use a weaker 
than sequential consistency model that is still relatively straightforward to understand by an 
application programmer. The main characteristics of the GA approach include: 

• GA distinguishes two types of completion of the store operations (i.e., put, scatter) 
targeting global shared memory: local and remote. The blocking store operation 
returns after the operation is completed locally, i.e., the user buffer containing the 
source of the data can be reused. The operation completes remotely after either a 
memory fence operation or a barrier synchronization is called. The fence operation is 
required in critical sections of the user code, if the globally visible data is modified. 

• The blocking operations (load/stores) are ordered only if they target overlapping 
sections of global arrays. Operations that do not overlap or access different arrays can 
complete in arbitrary order. 

•  The nonblocking load/store operations complete in arbitrary order. The programmer 
uses wait/test operations to order completion of these operations, if desired. 

3. The Global Array Toolkit 
There are three classes of operations in the Global Array toolkit: core operations, task parallel 
operations, and data parallel operations. These operations have multiple language bindings, 
but provide the same functionality independent of the language. The GA package has grown 
considerably in the course of ten years. The current library contains approximately 200 
operations that provide a rich set of functionality related to data management and 
computations involving distributed arrays. 

3.1 Functionality 

The basic components of the Global Arrays toolkit are function calls to create global arrays, 
copy data to, from, and between global arrays, and identify and access the portions of the 
global array data that are held locally. There are also functions to destroy arrays and free up 
the memory originally allocated to them. The basic function call for creating new global 
arrays is nga_create. The arguments to this function include the dimension of the array, 
the number of indices along each of the coordinate axes, and the type of data (integer, float, 
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double, etc.) that each array element represents. The function returns an integer handle that 
can be used to reference the array in all subsequent calculations. The allocation of data can be 
left completely to the toolkit, but if it is desirable to control the distribution of data for load 
balancing or other reasons, additional versions of the nga_create function are available 
that allow the user to specify in detail how data is distributed between processors. Even the 
basic nga_create call contains an array that can be used to specify the minimum 
dimensions of a block of data on each processor. 

One of the most important features of the Global Arrays toolkit is the ability to easily move 
blocks of data between global arrays and local buffers. The data in the global array can be 
referred to using a global indexing scheme and data can be moved in a single function call, 
even if it represents data distributed over several processors. The nga_get function can be 
used to move a block of distributed data from a global array to a local buffer and has a 
relatively simple argument list. The arguments consist of the array handle for the array that 
data is being taken from, two integer arrays representing the lower and upper indices that 
bound the block of distributed data that is going to be moved, a pointer to the local buffer or a 
location in the local buffer that is to receive the data, and an array of strides for the local data. 
The nga_put call is similar and can be used to move data in the opposite direction. For a 
distributed data paradigm with message-passing, this kind of operation is much more 
complicated. The block of distributed data that is being accessed must be decomposed into 
separate blocks, each residing on different processors, and separate message-passing events 
must be set up between the processor containing the buffer and the processors containing the 
distributed data. A conventional message-passing interface will also require concerted actions 
on each pair of processors that are communicating, which contributes substantially to program 
complexity.  

The one-sided communications used by Global Arrays eliminate the need for the programmer 
to account for responses by remote processors. Only the processor issuing the data request is 
involved, which considerably reduces algorithmic complexity compared to the programming 
effort required to move data around in a two-sided communication model. This is especially 
true for applications with dynamic or irregular communication patterns. Even for other 
programming models that support onesided communications, such as MPI-2, the higher level 
abstractions supported by GA can reduce programming complexity. To copy data from a local 
buffer to a distributed array requires only a single call to nga_put. Based on the data 
distribution, the GA library handles the decomposition of the put into separate point-to-point 
data transfers to each of the different processors to which the data must be copied and 
implements each transfer. The corresponding MPI_Put, on the other hand, only supports 
point-to-point transfers, so all the decomposition and implementation of the separate transfers 
must be managed by the programmer. 

To allow the user to exploit data locality, the toolkit provides functions identifying the data 
from the global array that is held locally on a given processor. Two functions are used to 
identify local data. The first is the nga_distribution function, which takes a processor 
ID and an array handle as its arguments and returns a set of lower and upper indices in the 
global address space representing the local data block. The second is the nga_access 
function, which returns an array index and an array of strides to the locally held data. In 
Fortran, this can be converted to an array by passing it through a subroutine call. The C 
interface provides a function call that directly returns a pointer to the local data.  
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In addition to the communication operations that support task-parallelism, the GA toolkit 
includes a set of interfaces that operate on either entire arrays or sections of arrays in the data 
parallel style. These are collective data-parallel operations that are called by all processes in 
the parallel job. For example, movement of data between different arrays can be accomplished 
using a single function call. The nga_copy_patch function can be used to move a patch, 
identified by a set of lower and upper indices in the global index space, from one global array 
to a patch located within another global array. The only constraints on the two patches are that 
they contain equal numbers of elements. In particular, the array distributions do not have to be 
identical and the implementation can perform as needed the necessary data reorganization (so 
called “MxN” problem [36]). In addition, this interface supports an optional transpose 
operation for the transferred data. If the copy is from one patch to another on the same global 
array, there is an additional constraint that the patches do not overlap. 

3.2 Example 

A simple code fragment illustrating how these routines can be used is shown in Figure 2. A 1-
dimensional array is created and initialized and then inverted so that the entries are running in 
the opposite order. The locally held piece of the arrays is copied to a local buffer, the local 
data is inverted, and then it is copied back to the inverted location in the global array. The 
chunk array specifies minimum values for the size of each locally held block and in this 
example guarantees that each local block is a 100 integer array. Note that global indices are 
used throughout and that it is unnecessary to do any transformations to find the local indices 
of the data on other processors. 
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A more complicated example is a distributed matrix multiply of two global arrays, which is 
illustrated schematically in Figure 3. (This is not an optimal algorithm and is used primarily to 
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Figure 3: Schematic representation of distributed matrix multiply, C = A·B. 

 

integer ndim, nelem 
parameter (ndim=1, nelem=100) 
integer dims, chunk, nprocs, me, g_a, g_b 
integer a(nelem), b(nelem) 
integer i, lo, hi, lo2, hi2, ld 
 
me = ga_nodeid()       ! rank of the process 
nprocs = ga_nnodes() ! total # of processes 
 
dims = nprocs*nelem 
chunk(1) = nelem 
ld = nelem 
 
call nga_create(MT_INT, ndim, dims, 
                         ‘array A’, chunk, g_a) 
call nga_duplicate(g_a, g_b, ‘array B’) 
!  INITIALIZE DATA IN GA (NOT SHOWN) 
call nga_distribution(g_a, me, lo, hi) 
 
call nga_get(g_a, lo, hi, a, ld) 
! INVERT LOCAL DATA 
do i = 1, nelem 
    b(i) = a(nelem+1-i) 
end do 
! INVERT DATA GLOBALLY 
lo2 = dims + 1 – hi 
hi2 = dims + 1 – lo 
call nga_put(g_b, lo2, hi2, b, ld) 

#define   NDIM      1 
#define   NELEM   100 
int dims, chunk, nprocs, me, g_a; 
int a[NELEM],b[NELEM]; 
int i, lo, hi, lo2, hi2, ld; 
GA::GlobalArray *g_a, *g_b; 
 
me       = GA::SERVICES.nodeid(); 
nprocs = GA::SERVICES.nodes(); 
 
dims   = nprocs*NELEM; 
chunk = ld = NELEM; 
 
// create a global array  
g_a = GA::SERVICES.createGA(C_INT, NDIM,   

                                            dims, “array A”, chunk); 

g_b = GA::SERVICES.createGA(g_a, “array B”); 
// INITIALIZE DATA IN GA (NOT SHOWN)  
g_a->distribution(me, lo, hi); 

g_a->get(lo, hi, a, ld); 
// INVERT DATA LOCALLY  
for (i=0; i<nelem; i++)    b[i] = a[nelem-1 – i]; 
// INVERT DATA GLOBALLY  
lo2 = dims – 1 – hi; 
hi2 = dims – 1 – lo; 
g_b->put(lo2,hi2,b,ld); 

 
Figure 2: Example Fortran (left) and C++ (right) code for transposing elements of an array 
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illustrate how the toolkit can be used.) The matrix multiply requires three global arrays, A, B, 
and the product array, C.  

The nga_distribution function is used to identify the indices of the locally held block 
from the product array C; this then determines what portions of the arrays A and B need to be 
moved to each processor to perform the calculation. The two data strips required to produce 
the target block are then obtained using a pair of nga_get calls. These calls will, in general, 
get data from multiple processors. Once the data from the A and B arrays has been copied to 
local buffers, the multiplication can be performed locally using an optimized scalar matrix 
multiplication algorithm, such as the LAPACK dgemm subroutine. The product patch is then 
copied back to the C array using an nga_put call. 

The Global Array toolkit also contains a broad spectrum of elementary functions that are 
useful in initializing data or performing calculations. These include operations that zero all the 
data in a global array, uniformly scale the data by some value, and support a variety of 
(BLAS-like) basic linear algebra operations including addition of arrays, matrix 
multiplication, and dot products. The global array matrix multiplication has been 
reimplemented over the years, without changing the user interface. These different 
implementations ranged from a wrapper to the SUMMA [19] algorithm to the more recently 
introduced high-performance SRUMMA algorithm [37, 38] that relies on a collection of 
protocols (shared memory, remote memory access, nonblocking communication) and 
techniques to optimize performance depending on the machine architecture and matrix 
distribution. 

3.3 Interoperability with other packages 

The GA model is compatible with and extends the distributed memory model of MPI. The 
GA library relies on the execution/run-time environment provided by MPI. In particular, the 
job startup and interaction with the resource manager is left to MPI. Thanks to the 
compatibility and interoperability with MPI, GA 1) can exploit the existing rich set of 
software based on MPI to implement some of the capabilities such as linear algebra and 2) 
provides the programmer with the ability to mix and match different communication styles 
and capabilities provided by GA and MPI. For example, the molecular dynamics module of 
NWChem uses an MPI-based FFT library combined with a GA-based implementation of 
different molecular dynamics algorithms and data management strategies.  

The GA package by itself relies on the linear algebra functionality provided by ScaLAPACK. 
For example, the ga_lu_solve is interfaced with the appropriate ScaLAPACK 
factorization pdgetrf and the forward/backward substitution interface pdgetrs. Because 
the global arrays already contain all the information about array dimensionality and layout, 
the GA interface is much simpler (see Figure 4). 
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Other important capabilities integrated with GA and available to the programmer include 
numerical optimization. These capabilities are supported thanks to the Toolkit for Advanced 
Optimization (TAO) [20, 39]. TAO offers these capabilities while relying on the GA 
distributed data management infrastructure and linear algebra operations. 

Examples of other toolkits and packages that are interoperable and have been used with GA 
include the Petsc PDE solver toolkit [40], CUMULVS toolkit for visualization and 
computational steering [41], and PEIGS parallel eigensolver library [42]. 

 
3.4 Language Interfaces 

One of the strengths of the GA toolkit is its ambivalence toward the language that the end user 
application is developed in. Interfaces in C, C++, Fortran, and Python to GA have been 
developed (Figure 5). Mixed language applications are supported as well. For example, a 
global array created from a Fortran interface can be used within a C function, provided that 
the corresponding data types exist in both languages. The view of the underlying data layout 
of the array is adjusted, depending on the language bindings, to account for the preferred array 
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Figure 5: Diagram of Global Arrays showing the overall structure of the toolkit and emphasizing 
different language bindings 

call ga_lu_solve(g_a, g_b) 

                  instead of  

call pdgetrf(n,m, locA, p, q, dA, ind, info) 

call pdgetrs(trans, n, mb, locA, p, q, dA, dB, info) 

Figure 4: ga_lu_solve operation is much easier to use than the ScaLAPACK interfaces that are invoked 
beneath this GA operation. 
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layout native to the language (column-based in Fortran and row-based in C/C++/Python). A 
50x100 array of double precision data created from the Fortran interface is available as a 
100x50 array of doubles through the C bindings.  

Recently, Babel [43] interfaces to GA have been developed. Babel supports additional 
translation of the GA interfaces to Fortran 90 and Java. 

4. Efficiency and Portability 
GA uses ARMCI (Aggregate Remote Memory Copy Interface) [16] as the primary 
communication layer. Collective operations, if needed by the user program, can be handled by 
MPI. Neither GA nor ARMCI can work without a message-passing library that provides the 
essential services and elements of the execution environment (job control, process creation, 
interaction with the resource manager).The Single Program Multiple Data (SPMD) model of 
computations is inherited from MPI, along with the overall execution environment and 
services provided by the operating system to the MPI programs. ARMCI is currently a 
component of the run-time system in the Center for Programming Models for Scalable 
Parallel Computing project [44]. In addition to being the underlying communication interface 
for Global Arrays, it has been used to implement communication libraries and compilers  [16, 
45-47]. ARMCI offers an extensive set of functionality in the area of RMA communication: 
1) data transfer operations; 2) atomic operations; 3) memory management and 
synchronization operations; and 4) locks. Communication in most of the non-collective GA 
operations is implemented as one or more ARMCI communication operations. ARMCI was 
designed to be a general, portable, and efficient one-sided communication interface that is 
able to achieve high performance [48-51]. It also avoided the complexity of the progress rules 
and increased synchronization in the MPI-2 one-sided model (introduced in 1997), that 
contributed to its delayed implementations and still rather limited adoption (as of 2004). 

During the ACTS project, development of the ARMCI library represented one of the most 
substantial tasks associated with advancements of GA. It implements most of the low level 
communication primitives required by GA. High performance implementations of ARMCI 
were developed under the ACTS project within a year for the predominant parallel systems 
used in the US in 1999 [16, 51] and it has been expanded and supported since then on most 
other platforms, including massively parallel scalar and vector supercomputers [52] as well as 
clusters [48, 50].  

GA’s communication interfaces combine the ARMCI interfaces with a global array index 
translation layer, see Figure 6. Performance of GA is therefore proportionate to and in-line 
with ARMCI performance. GA achieves most of its portability by relying on ARMCI. This 
reduces the effort associated with porting GA to a new platform to porting ARMCI. GA relies 
on the global memory management provided by ARMCI, which requires that remote memory 
be allocated via the memory allocator routine, ARMCI_Malloc (similar to MPI_Win_malloc 
in MPI-2). On shared memory systems, including SMPs, this approach makes it possible to 
allocate shared memory for the user data and consecutively map remote memory operations to 
direct memory references, thus achieving sub-microsecond latency and a full memory 
bandwidth [51]. Similarly, on clusters with networks based on physical memory RDMA, 
registration of allocated memory maks it suitable for zero-copy communication. To support 
efficient communication in the context of multi-dimensional arrays, GA requires and utilizes 
the non-contiguous vector and multi-strided primitives provided by ARMCI [16]. 
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Many GA operations achieve good performance by utilizing the low-overhead high-overlap 
non-blocking operations in ARMCI to overlap computation with communication. Even 
blocking one-sided GA operations internally use non-blocking ARMCI operations to exploit 
available concurrency in the network communication. Figure 6 shows how a GA_Get call is 
implemented and eventually translated to ARMCI Get call(s). The left side represents a flow 
chart and the right side shows the corresponding example for the flowchart. A GA Get call 
first requires determination of data locality: the physical location of the data in the 
distributed/partitioned address space needs to be determined. Then indices corresponding to 
where the data is located (on that process) need to be found. When this information is 
available, multiple ARMCI non-blocking Get calls are made, one for each remote destination 
that holds a part of the data. After all the calls are issued, they are waited upon until 
completed. By issuing all the calls first and then waiting on their completion, a significant 
amount of overlap can be achieved when there is more than one remote destination. When the 
wait is completed, the data is in the buffer and the control is returned to the user program. 
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On cluster interconnects, ARMCI achieves bandwidth close to the underlying network 
protocols [50], see Figure 7. The same applies to latency if the native platform protocol 
supports the equivalent remote memory operation (e.g., elan_get on Quadrics). For 
platforms that do not support remote get (VIA) the latency sometimes includes the cost of 
interrupt processing that is used in ARMCI to implement the get operation. Although, relying 
on interrupt may increase the latency over the polling-based approaches, progress in 
communication is guaranteed regardless of whether or not the remote process is computing or 
communicating. The performance of inter-node operations in GA closely follows the 
performance of ARMCI. Thanks to its very low overhead implementation, ARMCI is able to 
achieve performance close to that of native communication protocols, see Figure 7. These 

Figure 6: Left: GA_Get flow chart. Right: An example: Process P2 issues GA_Get to get a chunk of data, 
which is distributed (partially) among P0, P1, P3 and P4 (owners of the chunk). 
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benefits are carried over to GA, making its performance very close to native communication 
protocols on many platforms. This can be seen in Figure 7, which compares GA Get 
performance with ARMCI Get performance and raw native network protocol performance on 
the Mellanox Infiniband and Elan4 (both are popular high speed current generation cluster 
interconnects). Figure 8 shows the performance of GA Get and Put on Linux clusters. Figure 
9 shows the performance of GA Get/Put strided calls for square sections of a two-dimensional 
array, which involve non-contiguous data transfers. Latencies in GA and ARMCI operations 
are compared in Table 1. The small difference between performances of these two interfaces 
is due to the extra cost of the global array index translation, see Figure 6. The differences are 
considerable in the shared memory version because simple load/store operation is faster than 
the index translation. 

Table 1: Latency (in microseconds) in GA and ARMCI operations 

Operation/platform Linux  
1.5GHz IA64 
Elan-4 

Linux  
1GHz IA64 
4X Infiniband 

Linux  
2.4GHz IA32  
Myrinet-2000/C card 

Linux  
2.4GHz IA32 
shared memory 

ARMCI Get 4.54 16 17 0.162 

GA Get 6.59 22 18 1.46 

ARMCI Put 2.45 12 12 0.17 

GA Put 4.71 16 13 1.4 

 

Figure 7: Comparison of GA Get with ARMCI Get and native protocols performance Left: InfiniBand 
(IA64), Right: Quadrics Elan4 (IA64) 
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5. Advanced Features 
The GA model was defined and implemented ten years ago [2], and then ported to the leading 
parallel machines of that time. In addition to ports and optimizations that have been 
introduced since then, the GA toolkit has evolved dramatically in terms of its capabilities, 
generality, and interoperability. In this section, advanced capabilities of the GA toolkit are 
discussed.  

5.1 Ghost Cells and Periodic Boundary Conditions 
Many applications simulating physical phenomena defined on regular grids benefit from 
explicit support for ghost cells. These capabilities have been added recently to Global Arrays, 
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Figure 8:  Performance of basic GA 1D operations on Linux clusters: get (left), put (right) 
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along with the corresponding update and shift operations that operate on ghost cell regions 
[53]. Examples of other packages that include support for ghost cells include POOMA [54], 
Kelp [55],  Overture [56], and Zoltan [57].  The update operation fills in the ghost cells with 
the visible data residing on neighboring processors. Once the update operation is complete, 
the local data on each processor contains the locally held “visible” data plus data from the 
neighboring elements of the global array, which has been used to fill in the ghost cells. Thus, 
the local data on each processor looks like a chunk of the global array that is slightly bigger 
than the chunk of locally held visible data, see Figure 10. The update operation to fill in the 
ghosts cells can be treated as a collective operation, enabling a multitude of optimization 
techniques. It was found that depending on the platform, different communication algorithms 
(message-passing, one-sided communication, shared memory) work the best. The 
implementation of the update makes use of the optimal algorithm for each platform. GA also 
allows ghost cell widths to be set to arbitrary values in each dimension, thereby allowing 
programmers to improve performance by combining multiple fields into one global array and 
using multiple time steps between ghost cell updates. The GA update operation offers several 
embedded synchronization semantics: no synchronization whatsoever, synchronization at the 
beginning of the operation, at the end or both. They are selected by the user by calling an 
optional function that cancels any synchronization points in the update operation, see Section 
5.5. This can be used to eliminate unnecessary synchronizations in codes where other parts of 
the algorithm guarantee consistency of the data. 

 
Along with ghost cells, additional operations are provided that can be used to implement 
periodic boundary conditions on periodic or partially periodic grids. All the onesided 
operations (put/get/accumulate) in GA are available in versions that support periodic 
boundary conditions. The syntax for using these commands is that the user requests a block of 
data using the usual global index space. If one of the dimensions of the requested block 
exceeds the dimension of the global array, that portion of the request is automatically wrapped 
around the array edge and the data from the other side of the array is used to complete the 
request. This simplifies coding of applications using periodic boundary conditions, since the 
data can be copied into a local buffer that effectively "pads" the original array to include the 
wrapped data due to periodicity. This eliminates the need to explicitly identify data at the 
edge of the array and makes coding much simpler. 
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Figure 10: An ordinary global array distributed on 9 processors (left) and the corresponding global array with 
ghost cells (right). 
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5.2 Sparse Data Management 
Unstructured meshes are typically stored in a compressed sparse matrix form where the arrays 
that represent the data structures are one-dimensional. Computations on such unstructured 
meshes often lead to irregular data access and communication patterns. They also map to a 
distributed, shared memory, parallel programming model. Developing high-level abstractions 
and data structures that are general and applicable to a range of problems and applications is a 
challenging task. Therefore, our plan was to identify a minimal set of lower level interfaces 
that facilitate operations on sparse data format first and then try to define higher level data 
structures and APIs after gaining some experience in using these interfaces.  

A set of functions was developed to operate on distributed, compressed, sparse matrix data 
structures built on top of one-dimensional global arrays [58, 59]. These functions have been 
patterned after similar functions in CMSSL, developed for Thinking Machines CM-2 and 
CM-5 massively parallel computers in the late 80’s and early 90’s. Some of them were also 
included in the set of HPF intrinsic functions [9]. The types of functions that have been 
designed, implemented and tested include: 1) enumerate; 2) pack/unpack; 3) scatter_with_OP, 
where OP can be plus, max, min; 4) segmented_scan_with_OP, where OP can be plus, max, 
min, copy; 5) binning (i.e., N-to-M mapping); and 6) a 2-key binning/sorting function. All the 
functions operate on one-dimensional global arrays and can form a foundation for building 
unstructured mesh data structures. Numerical operators defined on unstructured meshes 
typically have sparse matrix representations that are stored as one-dimensional data structures. 
The Global Array functions for manipulating one-dimensional arrays have been adopted in 
mesh generation (NWGrid [60]) and computational biophysics (NWPhys [61]) codes.  

The use of some of these functions can be seen by considering a sparse matrix multiplying a 
sparse vector. Sparse data structures are generally stored by mapping them onto dense, one-
dimensional arrays. A portion of a sparse matrix stored in column major form is shown in 
Figure 11 along with its mapping to a corresponding dense vector. Only non-zero values are 
stored, along with enough information about indices to reconstruct the original matrix. 

 
Generally, only compressed arrays are created, construction of the full sparse matrix is 
avoided at all steps in the algorithm. The steps of a sparse matrix-vector multiply are 
illustrated in Figure 12. The original sparse matrix and sparse vector are shown in Figure 
12(a). The sparse vector is then mapped onto a matrix with the same sparsity pattern as the 
original sparse matrix (Figure 12(b)). This mapping is partially accomplished using the 
enumerate command. Note that the remapped sparse vector may have many zero entries 

R1 R2 R3 R4 R5 

Figure 11. A portion of a sparse matrix in column major form is remapped to a dense, one-dimensional array. 
Rows 1-5 are converted to short segments in the one-dimensional array. 
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(shown as hatched elements in the figure). Both the original matrix and the sparse matrix 
representation of the vector are written as dense one-dimensional arrays (Figure 12(c)). The 
multiplication can be completed by multiplying together each component of the two dense 
vectors and then performing a segmented_scan_with_OP, where OP is addition, to get the 
final product vector. The segmented_scan_with_OP adds together all elements within a 
segment and can be used to add together all elements in the product matrix corresponding to 
an individual row (Figure 12(d)). 

             
The pack/unpack functions can be used to work on portions of the sparse data structure by 
masking portions of the data structure and copying it into another array. These can be used to 
implement the equivalent of the HPF where statement. The binning routines can be used to 
partition and manipulate structures. For example, the N-to-M binning function can be used to 
spatially partition an unstructured mesh using a regular mesh superimposed on top of it. 

5.3 Nonblocking Communication 
Nonblocking communication is a mechanism for latency hiding where a programmer attempts 
to overlap communication with computation. In some applications, by pipelining 
communication and computation, the overhead of transferring data from remote processors 
can be overlapped with calculations. The nonblocking operations (get/put/accumulate) are 
derived from the blocking interface by adding a handle argument that identifies an instance of 
the non-blocking request. Nonblocking operations initiate a communication call and then 
return control to the application. A return from a nonblocking operation call indicates a mere 
initiation of the data transfer process and the operation can be completed locally by making a 
call to the wait (ga_wait) routine. Waiting on a nonblocking put or an accumulate operation 
assures that data was injected into the network and the user buffer can be now be reused. 
Completing a get operation assures data has arrived into the user memory and is ready for use. 
The wait operation ensures only local completion. Unlike their blocking counterparts, the 

Figure 12. (a) original sparse matrix-vector multiply (b) sparse vector has been expanded to a sparse matrix 
(transpose of original sparse vector is included to show how mapping is accomplished) (c) Compressed versions 

of sparse matrix and vector (d) product vector after element-wise multiplication and segmented scan with 
addition. 
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nonblocking operations are not ordered with respect to the destination. Performance is one 
reason, another is that by ensuring ordering we incur additional and possibly unnecessary 
overhead on applications that do not require their operations to be ordered. For cases where 
ordering is necessary, it can be done by calling a fence operation. The fence operation is 
provided to the user to confirm remote completion if needed.  

It should be noted that most users of nonblocking communication implicitly assume that 
progress in communication can be made concurrently in a purely computational phase of the 
program execution. However, this assumption is often not satisfied in practice -- the 
availability of a nonblocking API does not guarantee that the underlying system hardware and 
native protocols support overlapping communication with computation [62].  

A simple benchmark was performed in the context of GA and MPI to demonstrate the overlap 
of communication with computation. We measure the overlap as follows: we assume the time 
to issue a non-blocking call is a constant, which can be represented by ti. The time to wait for 
a non-blocking call (or the time taken to issue a wait for the non-blocking call) is td + tw, 
where td represents time spent waiting for the data to arrive and tw represents the time taken to 
complete the wait call when the data has already arrived. ti + ( td + tw) is the total time taken 
when the non-blocking call is issued and waited on immediately. This time is typically the 
same as the time taken to issue a blocking version of the same call. In the non-blocking call, td 
represents the time that can be effectively be utilized in doing computation. A very good 
measure for the effectiveness of a non-blocking call is to see what percentage of the total time 
td represents (td * 100) / ( ti + ( td + tw). A higher percentage indicates more overlap is possible.  

We performed an experiment on two nodes with one node issuing a nonblocking get for data 
located on the other, and then waiting for the transfer to be completed in the wait call. We 
also implemented an MPI version of the above benchmark; our motivation was to compare 
the overlap in GA with the overlap in the MPI nonblocking send/receive operations. In MPI, 
if one process (A) needs a portion of data from another one (B), it sends a request and waits 
on a nonblocking receive for the response. Process A’s calling sequence is as follows: 1) 
MPI_Isend, 2) MPI_Irecv, 3) MPI_wait (waits for MPI_Isend to complete), 4) MPI_Wait 
(waits for MPI_Irecv to complete). Process B’s calling sequence is: 1) MPI_Recv and 2) 
MPI_Send. In process A, computation is gradually inserted between the initiating 
nonblocking Irecv call (i.e after step 3) and the corresponding wait completion call. We 
measured the computation overlap for both the GA and MPI versions of the benchmark on a 
Linux cluster with dual 2.4GHz Pentium-4 nodes and Myrinet-2000 interconnect. The results 
are plotted in Figure 13. The percentage overlap (represented by (td * 100) / ( ti + ( td + tw))) is 
effectively a measure of the amount of time that a nonblocking (data transfer) call can be 
overlapped with useful computation. We observe that GA offers a higher degree of overlap 
than MPI. For larger messages (>16K) where the MPI implementation switches to the 
Rendezvous protocol (which involves synchronization between sender and receiver), we were 
able to overlap almost the entire time (>99%) in GA, where as in MPI, it is less than 10%.  

The experimental results illustrating limited opportunities for overlapping communication and 
computation are consistent with findings reported for multiple MPI implementations in [62-
64]. Since the GA represents a higher–level abstraction model and, in terms of data transfer, 
simpler than MPI (e.g., it does not involve message tag matching or dealing with early arrival 
of messages), more opportunities for effective implementation of overlapping communication 
with computation are available. 
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5.4 Mirroring: Shared Memory Cache for Distributed Data 
Caching distributed memory data in shared memory is another mechanism for latency hiding 
supported in the GA toolkit [65]. It has been primarily developed for clusters with SMP 
nodes; however earlier it was used for grid computing [66, 67]. Compared to most custom 
supercomputer designs, where the CPU power is balanced with a high speed memory 
subsystem and high-performance network, commodity clusters are often built based on very 
fast processors using relatively low-performance networks. Mirrored arrays are designed to 
address these configurations by replicated data across nodes but distributing it and storing in 
shared memory within the SMP nodes (Figure 14). This technique has several potential 
advantages on clusters of SMP nodes, particularly if the internode communication is slow 
relative to computation. Work can be done on each “mirrored” copy of the array 
independently of copies on other nodes. Within the node the work is distributed, which saves 
some memory (on systems with many processors per node, this savings can be quite 
substantial relative to strict replication of data). Intranode communication is via shared 
memory and is therefore very fast. One-sided operations such as put, get, and accumulate are 
only between the local buffer and the mirrored copy on the same node as the processor 
making the request. Most operations that are supported for regular global arrays are also 
supported for mirrored arrays, so the amount of user code modification in transitioning from 
fully distributed to mirrored schemes is minimal. Operations between two or more global 
arrays are generally supported if both arrays are mirrored or both arrays are distributed. 
Mirrored arrays can be used in situations where the array is being exclusively accessed for 
either reading or writing. For the DFT application described below, data is read from one 
mirrored array using the nga_get operation and accumulated to another mirrored array 
using nga_acc. Mirrored arrays also limit the problem size to systems that can be contained 
on a single node. In fact, mirrored arrays are essentially using memory to offset 
communication, but because data is distributed within the node they are more efficient than 
strict replicated data schemes. 

At some point the different copies of the array on each node must be combined so that all 
copies are the same. This is accomplished with the ga_merge_mirrored function. This 
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function adds together all copies of the mirrored array across all nodes. After merging, all 
copies of the mirrored array are the same and equal to the sum of all individual copies of the 
array. This function allows programmers to combine the work that is being done on separate 
SMP nodes together to get a single answer that is easily available to all processors. In addition 
to creating the new merge operation, the copy operations have been augmented so that they 
work between a mirrored array and a regular distributed array. The copy operation does not 
implicitly perform a merge if the mirrored array is copied into distributed array. The 
availability of an easy conversion between mirrored and distributed arrays allows 
programmers to convert some parts of their code to use mirrored arrays and leave other parts 
of their code using distributed arrays. Code that is limited by communication can be converted 
to use mirroring while the remaining code can be left using distributed arrays, thereby saving 
memory. 

 

5.5. Synchronization Control 
GA includes a set of data-parallel interfaces that operate on global arrays, including BLAS-
like linear algebra operations. As a convenience to the programmer (especially novice users), 
to simplify management of memory consistency, most data parallel operations include at the 
beginning and at the end a global barrier operation. The role of the initial barrier is to assure 
safe transition from the task parallel to the data parallel phase of computations. Specifically, 
before the data in a global array is accessed in the data parallel operation, the barrier call 
synchronizes the processors and completes any outstanding store operations that could modify 
the data in the global array. Similarly, the final barrier assures that all processors committed 
their changes to the global array before it can be accessed remotely. Although the barrier 
operation is optimized for performance, and, where possible, uses hardware barriers, it is a 
source of overhead, especially in fine-grain sections of the applications. The importance of 
reducing barrier synchronization has been recognized and studied extensively in the context 
of data-parallel computing [68-70]. In order to eliminate this overhead, the toolkit offers an 

���������	���� �	����������� ��������������

Figure 14: Example of a 2-dimensional array fully distributed (a), SMP mirrored (b), and replicated (c) 
on a two 4-way SMP cluster nodes 
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optional ga_mask_sync operation that allows the programmer to eliminate either of the 
two barriers before calling a data parallel operation. This operation updates the internal state 
of the synchronization flags so that when the actual operation is called, one or both barriers 
can be eliminated. The temporal scope of the mask operation is limited to the next data 
parallel operation and when that is completed the status of the synchronization flags is reset. 
The availability of this mechanism enables the programmer, after debugging and analyzing 
dependencies in his/her code, to improve performance by eliminating redundant barriers.  

5.6 Locks and Atomic Operations 
Atomic operations such as fetch-and-add can be used to implement dynamic load balancing 
(see Section 6.1) or mutual exclusion. In addition, GA through ARMCI offers explicit lock 
operations that help the programmer to protect critical sections of the code. ARMCI lock 
operations are optimized to deliver better performance than the user would otherwise be able 
to implement based on fetch-and-add [48, 71].  

Moreover, GA offers an atomic reduction operation, accumulate, that has built in 
atomicity and thus does not require explicit locking. This operation is one of the key 
functionalities required in quantum chemistry applications, and makes the use of locks in this 
application area rare. This operation and its use in chemistry was the primary motivation for 
including mpi_accumulate in the MPI-2 standard. One important difference is that GA, 
unlike MPI with its distributed memory model, does not specify explicitly the processor 
location where the modified data is located. In addition, GA provides an additional scaling 
parameter that increases generality of this operation. This is similar to the BLAS daxpy 
operation. 

5.7. Disk Resident Arrays 
Global Arrays provide a convenient mechanism for programs to store data in a distributed 
manner across processors and can be considered as a level in a memory hierarchy. This 
particular level can represent the memory of the entire system and is therefore much larger 
than the memory on any single processor. However, many applications still require more 
memory than is available in core, even when data is distributed. For example, in 
computational chemistry there are two strategies for dealing with this situation [72]. The first 
is to reorganize the calculation so that intermediate results are no longer stored in memory but 
are recomputed when needed. This approach results in excess calculations and the number of 
computations increase as the memory requirements are decreased. The cost of these excess 
calculations can be reduced by designing hybrid algorithms that store some results and 
recompute the remainder with the goal of choosing the partition in a way that simultaneously 
minimizes recomputation and memory. The other approach is to write intermediate results to 
disk, which typically can store much more data than memory. The tradeoff here is the cost of 
recomputing results compared to the I/O cost of writing and reading the data to a file. The 
advantage to this approach is that the amount of data that can be stored to disk is usually 
orders of magnitude higher than that can be stored in core. 
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Disk Resident Arrays (DRAs) are designed to extend the concept of Global Arrays to the file 
system, in effect, treating disk as another level in the memory hierarchy [72, 73]. A DRA is 
essentially a file, or collection of files, that represent a global array stored on disk. Data stored 
in a disk resident array can be copied back and forth between global arrays using simple read 
and write commands that are similar to the syntax of the global arrays nga_copy_patch 
commands. This operation is illustrated schematically in Figure 15. The collective mode of 
operation in DRA increases the opportunities for performance optimizations [74]. Data in the 
DRA can be referred to using a global index space, identical to that used in Global Arrays. 
The details of how data is partitioned within a single file or divided between multiple files are 

Figure 16: Write operation between a patch of a global array to a patch of a disk resident array. Data flows from 
the global array to the I/O processors and then is written to disk. 
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Figure 15: Schematic of a write operation from a patch of a global array g_a(glo:ghi) to a patch of a disk 
resident array d_a(dlo:dhi) 
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hidden from the user, however, the underlying code is designed to partition data on the disk to 
optimize I/O. The use of multiple files allows the system to read and write data to disk from 
multiple processors. If the local scratch space mounted on each node or a parallel file system 
is used for these files, this can greatly increase the bandwidth for reading and writing to the 
DRAs. The flow of data for a write statement to a DRA distributed on separate disks is 
illustrated schematically in Figure 16. 

This example represents a write request from a patch of a global array to a patch of the DRA. 
The DRA patch is first partitioned between the different files on disk. Each file is controlled 
by a single processor, typically one I/O processor per SMP node. Once the DRA patch has 
been decomposed between files, the global array patch is also decomposed so that each 
portion of the global array is mapped onto its corresponding portion of the DRA patch. Each 
piece of the global array data is then moved to the I/O processor and copied into the I/O 
buffer. Once the data is in the I/O buffer, it is then written to disk. This operation can occur 
independently on each I/O processor, allowing multiple read/write operations to occur in 
parallel. The partitioning of data on the disk is also chosen to optimize I/O for most data 
requests. In addition to computational chemistry applications [72], DRAs have been used to 
temporarily store large data sets to disk in image processing applications [75]. 

5.8 GA Processor Groups 
GA supports creating and managing arrays on processor groups for the development 

of multi-level parallel algorithms [21]. Due to the required compatibility of GA with MPI, the 
MPI approach to the processor group management was followed as closely as possible. 
However, in shared memory programming management of memory and shared data rather 
than management of processor groups itself is the primary focus. More specifically we need to 
determine how to create, efficiently access, update, and destroy shared data in the context of 
the processor management capabilities that MPI already provides. One of the fundamental 
group-aware GA operations involves the ability to create shared arrays on subsets of 
processors. Every global array has only one associated processor group specifying the group 
that created the array. Another useful operation is the data-parallel copy operation that works 
on arrays (or subsections) defined on different processor groups as long as the intersection of 
these groups is a non-empty set. In the GA programming model, data distributed in a 
processor group (containing M processors) can be redistributed to another processor group 
(containing N processors) regardless of the number of processors in each group and the data 
layout. This can be done as a collective call across processors in both the groups or as a non-
collective one-sided operation. This feature enabled development of applications with 
nontrivial relationships between processor groups. 

The concept of the default processor group is a powerful capability added to enable 
rapid development of new group-based codes and simplify conversion of the existing non-
group aware codes. Under normal circumstances, the default group for a parallel calculation is 
the MPI “world group” (contains the complete set of processors user allocated), but a call is 
available that can be used to change the default group to a processor subgroup. This call must 
be executed by all processors in the subgroup. Once the default group has been set, all 
operations are implicitly assumed to occur on the default processor group unless explicitly 
stated otherwise. By default, GA shared arrays are created on the default processor group and 
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global operations by default are restricted to the default group. Inquiry functions, such as the 
number of nodes and the node ID, return values relative to the default processor group.  

5.9 Common Component Architecture (CCA) GA Component 
The Common Component Architecture (CCA) is a component model specifically designed for 
high performance computing. Components encapsulate well-defined units of reusable 
functionality and interact through standard interfaces [36]. The GA component, an object-
oriented CCA based component, provides interfaces to full capabilities of GA. This 
component supports both classic and SIDL interfaces, and it provides three ports: 
GlobalArrayPort, DADFPort and LinearAlgebraPort. These ports are the set of public 
interfaces that the GA component implements and can be referenced and used by other 
components. The GlobalArrayPort provides interfaces for creating and accessing distributed 
arrays. The LinearAlgebraPort provides core linear algebra support for manipulating vectors, 
matrices, and linear solvers. The DADFPort offers interfaces for defining and querying array 
distribution templates and distributed array descriptors, following the API proposed by the 
CCA Scientific Data Components Working Group [76].  The GA component is currently used 
in applications involving molecular dynamics and quantum chemistry, as discussed in [39]. 

Figure 17 illustrates an example of CCA components in action in a CCA (e.g. CCAFFEINE) 
Framework [77]. The GA component adds the “provides” ports, which is visible to other 
components to the CCA Services object. TAO component registers the ports that it will need 
with the CCA Services object. The CCAFEINE framework connects GA and TAO 
components and transfers the LinearAlgebraPort(LA) to the TAO component, using the GA 
Component’s Services object.  

In [22], experimental results for numerical Hessian calculation show that multilevel 
parallelism expressed and managed through the CCA component model and GA processor 
groups can be very effective for improving performance and scalability of NWChem. For 
example, the numerical Hessian calculation using three levels of parallelism outperformed the 
original version of the NWChem code based on single level parallelism by a factor of 90% 
when running on 256 processors. 
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6 Applications of Global Arrays 
The original application for GA was to support electronic structure codes and it remains the 
de facto standard for managing data transfer in most programs that perform large, scalable 
electronic structure calculations. Electronic structure calculations involve the construction of 
large, dense matrices. Once constructed, these are subsequently manipulated using standard 
linear algebra operations to produce the final answer. The construction of the matrices is 
highly parallel in that it can be divided into a large number of smaller tasks. Each task can be 
assigned to a processor, which is then responsible for working on a portion of the matrix and 
accumulating the results into a product matrix. The tasks typically require copying a portion 
of one matrix into a local buffer, doing some work on it, and then copying and accumulating 
the result back into another matrix. The natural decomposition of these tasks is easily 
formulated in terms of the dimensions of the original matrices but typically results in copying 
portions of the matrix that are distributed over several processors to local buffers. The copy 
operations between the local buffer and the distributed matrices therefore require 
communication with multiple processors and would be quite complicate if coded using a 
standard message-passing interface. Global Arrays can accomplish each copy with a single 
function call using the global index space. The matrix operations that must be performed to 
get the final answer are also highly non-trivial for distributed data. GA supports many of these 
operations directly and also provides interfaces to other linear algebra packages, such as 
SCALAPACK. Because all the information about the matrix and how it is distributed are 
already contained in the global array, these interfaces are quite simple and reflect the algebra 
of the original problem, rather than the details of how the data is distributed. 

The ability of Global Arrays to manage large distributed arrays has made them useful in many 
other areas beyond electronic structure. Any application that requires large, dense, multi-
dimensional data grids can make use of toolkit. Examples are algorithms and applications 
built around dense matrices (e.g. electronic structure) and algorithms on multi-dimensional 
grids (hydrodynamics and other continuum simulations). Even algorithms that are based on 
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sparse data structures (unstructured grids in finite element codes) often convert the original 
sparse data to a dense 1-dimensional array. For most of these applications it remains attractive 
to treat these data structures as single arrays using a global index space that maps directly 
onto the original problem. However, the large amount of data typically involved means that 
the data must be distributed, which makes the concept of a single local data structure 
impractical. Data must now be accessed by referring to a local index that identifies the data 
within a single processor, as well as an index identifying the processor that the data is stored 
on. The connection between the original problem and the data is lost and must now be 
managed by the application programmer. GA provides higher level abstractions that are 
designed to restore the connection between the global index space of the original problem and 
the distributed data by providing an interface that manages all the necessary transformations 
between the global index space and the local indices that specify where data is actually 
located. This approach vastly simplifies programming and thus improves productivity [78]. 
The toolkit also provides mechanisms for identifying what data is held locally on a processor, 
allowing programmers to make use of data locality when designing their programs, and even 
provides direct access to the data stored in the global array, which saves on the time and 
memory costs associated with duplication. 

6.1 Molecular Dynamics 
Molecular dynamics (MD) is a computer simulation technique where the time evolution of a 
set of interacting atoms is followed by integrating their equations of motion. For this 
application, the force between two atoms is approximated by a Lennard-Jones potential 
energy function U(r), where r is the distance between two atoms. Good performance and 
scalability in the application require an efficient parallel implementation of the objective 
function and gradient evaluation.  These routines were implemented by using GA to 
decompose the atoms over the processors and distribute the computation of forces in an 
equitable manner.  The decomposition of forces between atoms is based on a block 
decomposition of the forces distributed among processors, where each processor computes a 
fixed subset of inter-atomic forces [79]. The entire array of forces (N x N) is divided into 
multiple blocks (m x m), where m is the block size and N is the total number of atoms. Each 
process owns N/P atoms, where P is the total number of processors.  Exploiting the symmetry 
of forces between two particles halves the amount of computation. The force matrix and atom 
coordinates are stored in a global array. A centralized task list is maintained in a global array, 
which stores the information of the next block that needs to be computed. 

To address the potential load imbalance in our test problem, we use a simple and effective 
dynamic load-balancing technique called fixed-size chunking [80]. This is a good example 
illustrating the power of shared memory style management of distributed data that makes the 
GA implementation both simple and scalable. Initially, all the processes get a block from the 
task list. Whenever a process finishes computing its block, it gets the next available block 
from the task list. Computation and communication are overlapped by issuing a nonblocking 
get call to the next available block in the task list, while computing a block [81]. This 
implementation of the dynamic load-balancing technique takes advantage of the atomic and 
one-sided operations in the GA toolkit (see Figure 18). The GA one-sided operations 
eliminate explicit synchronization between the processor that executes a task and the 
processor that has the relevant data. Atomic operations reduce the communication overhead in 
the traditional message-passing implementations of dynamic load balancing based on the 
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master-slave strategy. This master-slave strategy has associated scalability issues because 
with the increased number of processors, management of the task list by a single master 
processor becomes a bottleneck.  Hierarchical master-slave implementations (with multiple 
masters) [82] address that part of the problem; however, they introduce synchronization 
between multiple masters that degrades performance. Moreover, the message-passing 
implementation of this strategy can be quite complex. On the other hand, the implementation 
of dynamic load balancing using GA atomics (fetch-and-increment operation) involves only a 
couple of lines of code, while the overall performance of the simulation is competitive with 
the  MPI-1 version [81]. 

 
The experimental results of the molecular dynamics benchmark on a Linux cluster with 
Myrinet indicate that using GA resulted in improved application performance over message-
passing, see Figure 19 [81]. This benchmark problem scales well when the number of 
processors and/or the problem size is increased, thus proving the solution is cost-optimal. In 
best cases, the performance improvement over MPI is greater than 40%.  
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Figure 18: Function gradient evaluation using GA (left). Speedup in the Lennard-Jones potential energy 
optimization for 32,768 and 65,536 atoms (right). 
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6.2 Lattice Boltzmann Simulation 
A scalar lattice Boltzmann code was converted to use the Global Array libraries [53]. The 
lattice Boltzmann algorithm is a method for simulating hydrodynamic flows based on a 
discretized version of the Boltzmann equation and is distinguished by its simplicity and 
stability[83]. The lattice Boltzmann algorithm is typically implemented on a regular square or 
cubic lattice (other lattices, such as the hexagonal lattice [84], are occasionally used) and is 
composed of two basic steps. The first is an equilibration step that can be completed at each 
lattice site by using only data located at that site, the second is a streaming step that requires 
data from all adjacent sites (depending on the particular implementation, this can include 
corner and edge sites). The streaming step requires communication because sites 
corresponding to the boundaries of the locally held data will need data from other processors. 
This is accomplished by padding the locally held data with ghost cells and using the GA 
update operation to refresh the data in these ghost cell regions at each time step. A graph of 
speedup versus processors is shown below in Figure 20 for a simulation on a 1024x1024 
lattice on an IBM SP. The timings show good speedups until quite large numbers of 
processors. 

An earlier version of this code was created that just used onesided put/get calls to copy a 
suitably padded piece of the global lattice to a local buffer. The update was then performed 
and the result (minus the padded lattice points) was copied back to the global array. If present, 
periodic boundary conditions were handled using the periodic versions of the put/get 
operations. This approach is also quite easy to implement, but has some disadvantages relative 
to ghost cells. First, more memory is required since the lattice must effectively be duplicated 
(once in the global array and again in the local buffers) and second, no advantage is taken of 
the potential for optimizing the communication involved in updating the boundary data. 
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6.3 Electronic structure 
As already mentioned, developers of electronic structure codes have elected the Global Arrays 
toolkit as a de facto standard as far as communication libraries are concerned. Some of the 
most widely used electronic structure codes make use of GA: NWChem [85], Columbus [86], 
MOLPRO [87], MOLCAS [88], QChem [89] and GAMESS-UK [90]. Developers of 
GAMESS-US [91] have developed their own distributed memory management layer that 
implements a subset of GA functionality. Another scalable chemistry code MPQC [92], has 
adopted ARMCI. Parallelization of methods implemented in these codes involves the 
distribution of dense matrices among processing elements; if N is defined as the number of 
basis functions used, methods like Hartree-Fock (HF) [93, 94] or Density-Functional Theory 
(DFT) [95, 96] make use of matrices of size N2, whereas correlated methods such as MP2 
[97] or Coupled Cluster [98] use quantities whose size scales as the fourth of higher power of 
N (leading to larger storage requirements). Typically, N is also proportional to the size of the 
system, so larger molecular systems lead to rapid increases in both memory and 
computational requirements. This makes it essential to distribute the data associated with each 
of the matrices. The task based nature of the algorithms also implies that there is extensive 
communication involved in copying back and forth between the distributed arrays and local 
buffers. 

As an example of the performance of GA for these theoretical methods, some benchmark 
numbers are reported for the DFT and MP2 methods (Figures 21 and 22). While the DFT 
benchmark scaling requires low interconnect latency, the MP2 runs necessitate high 
interconnect bandwidth and high performing disk I/O; therefore, the lower latency of Elan3 
vs. Elan4 and of Infiniband vs. Myrinet can be noticed in Figures 21 and 22. 
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Figure 21: DFT LDA energy calculation on a Si8O7H18 zeolite fragment, 347 basis functions 
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Figure 22: MP2 Energy + gradient calculation on a (H2O)7 cluster, 287 basis functions 

 
Figure 23: SiOSi3 benchmark using mirrored and fully distributed approach on a 1GHZ Itanium2 dual 

processor system with three different interconnects: Ethernet, Myrinet, or Elan3 (Quadrics) 
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6.3.1 Mirrored Arrays in Density Functional Theory 

The mirrored arrays functionality has been implemented in the Gaussian function-based DFT 
module of NWChem [65, 85]. More precisely, it has been implemented in the evaluation of 
the matrix representation of Exchange-Correlation (XC) potential on a numerical grid [99]. 
Prior to the current work, this quantity was evaluated using a distributed data approach, where 
the main arrays were distributed among the processing elements by using the GA library. 

This algorithm is very similar to the Hartree-Fock (a.k.a. SCF) algorithm, since both methods 
are characterized by the utilization of two main 2-dimensional arrays. The major steps of this 
algorithm require the generation of a density matrix from a parallel matrix multiply into a 
distributed global array representing the density matrix. Portions of this matrix must be copied 
to a local buffer where they are used to evaluate the density, which is then used to evaluate a 
portion of the Kohn-Sham matrix. This is copied back out to another distributed array. The 
construction of the Kohn-Sham matrix requires repeated use of the nga_get, and nga_acc 
methods and involves significant communication. Doing this portion of the calculation on 
mirrored arrays guarantees that all this communication occurs via shared memory and results 
in a significant increase in scalability. Results for a DFT calculation using the mirrored arrays 
on a standard chemical system are shown in Figure 23. The system is a 1GHZ Itanium2 dual 
processor system with three different interconnects: Ethernet, Myrinet, or Elan3 (Quadrics). 
The results show that scalability for the mirrored calculation is improved on all three 
networks over the fully distributed approach, with especially large improvements for the 
relatively slow Ethernet. 

Surprisingly, Myrinet, which represents a network with intermediate performance, shows the 
smallest overall improvement on going from distributed to mirrored arrays. The expectation 
would be that Elan3 would show the least amount of improvement, since this is the fastest 
network and latency would not be expected to contribute as significantly to overall 
performance. 

6.4 AMR-based Computational Physics 
Grid generation is a fundamental part of any mesh-based computational physics problem. The 
NWGrid/NWPhys package integrates automated grid generation, time-dependent adaptivity, 
applied mathematics, and numerical analysis for hybrid grids on distributed parallel 
computing systems. This system transforms geometries into computable hybrid grids upon 
which computational physics problems can then be solved. NWGrid is used as the 
preprocessing grid generator [100] for NWPhys, setting up the grid, applying boundary and 
initial conditions, and defining the run-time parameters for the NWPhys calculations. 
NWGrid provides the grid partitioning functions and the time-dependent grid generation 
functions for adaptive mesh refinement (AMR), reconnection, smoothing, and remapping. 
The main tool used by NWGrid to perform partitioning is METIS [101]. To make use of 
METIS the multi-dimensional, hybrid, unstructured mesh is transformed into a two-
dimensional graph, where nodes (or elements) form the diagonal entries of the graph and 
node-node (element-element) connections form the off-diagonal entries.  NWPhys moves the 
grid according to forcing functions in non-linear physics drivers and NWGrid fixes it up 
based on grid topology and grid quality measures. Extensions of NWPhys include 
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incorporating new packages for fluid-solid interactions, computational electromagnetics, 
particle transport, chemistry, and aerosol transport.  

 

 
 

 

# of processors Time(sec) 

     1 1690 

     2 1974 

     4 2222 

     8 2293 

   16 2343 

   32 2355 

   64 2384 

128 2390 

Table 2: Timing Results for a problem with 10,000 elements per processor and 1320 cycles. The problem size 
increases proportionally to the number of processors. 

All of this functionality relies heavily on one dimensional representation of the grid data and 
operators defined on the grid. The package is implemented on top of GA, and makes 
extensive use of the operations supporting sparse data management, described above in 
Section 5.2. Figure 24 demonstrates performance of human lung modeling on a Linux cluster, 
indicating excellent scaling for this application. This problem involves one million grid 
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elements and the simulation involved 360 cycles. The scaling of the absolute time and grind-
time (time/cycle/element) is approximately linear, mainly because of the (near) optimal 
partitioning of the data and work per processor. Table 2 shows the timing results of a problem 
that grows as the number of processors grows. The problem was defined to have 10,000 
elements per processor. So, 32 processors had 320,000 elements and 64 processors had 
640,000 elements. The scaling is relatively constant as the problem size and number of 
processors grow. In numerous applications, the performance has been demonstrated to scale 
linearly with the number of processors and problem size, as most unstructured mesh codes 
that use optimal data partitioning algorithms should. 

7. Conclusions  
This paper gives an overview of the functionality and performance of the Global Arrays 
toolkit. GA was created to provide application programmers with an interface that allows 
them to distribute data while maintaining the type of global index space and programming 
syntax similar to what is available when programming on a single processor. The details of 
identifying data location and mapping indices can be left to the toolkit, thereby reducing 
programming effort and the possibility of error. For many problems, the overall volume of 
code that must be created to manage data movement and location is significantly reduced. 

The Global Array toolkit has been designed from the start to support shared memory style 
communication, which offers numerous possibilities for further code optimizations beyond 
what are available in traditional message-passing models. The shared communication model 
of GA also maps closely to current hardware and the low level communication primitives on 
which most communication libraries are built. In GA, the shared memory model is supported 
by ARMCI, which is an explicitly one-sided communication library. The availability of non-
blocking one-sided protocols provides additional mechanisms for increasing the scalability of 
parallel codes by allowing programmers to overlap communication with computation. By 
“pipelining” communication and computation, the overhead of transferring data from remote 
processors can be almost completely overlapped with calculations. This can substantially 
reduce the performance penalty associated with remote data access on large parallel systems. 

The Global Array toolkit also offers many high-level functions traditionally associated with 
arrays, eliminating the need for programmers to write these functions themselves. Examples 
are standard vector operations such as dot products and matrix multiplication, scaling an array 
or initializing it to some value, and interfaces to other parallel libraries that can solve linear 
equations or perform matrix diagonalizations. Again, this drastically cuts down on the effort 
required from the application programmer and makes it less error prone. 

The widespread availability and vendor support for MPI has lead to a corresponding 
assumption that the message-passing paradigm is the best way to implement parallel 
algorithms. However, practical experience suggests that even relatively simple operations 
involving the movement of data between processors can be difficult to program. The goal of 
the Global Array toolkit is to free the programmer from the low level management of 
communication and allow them to deal with their problems at the level at which they were 
originally formulated. At the same time, compatibility of GA with MPI enables the 
programmer to take advantage of the existing MPI software/libraries when available and 
appropriate. The variety of applications that have been implemented using Global Arrays 
attests to the attractiveness of using higher level abstractions to write parallel code. 
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Appendix A 
Figure A2 illustrates that programming based on GA is relatively simple. For the parallel 
transposition of 1-dimensional array (Figure A1) thanks to the high-level interfaces for array 
management provided by GA, the code size reduces by a factor of three when compared to the 
MPI version. In the MPI version, each task has to identify where (tasks ranks) to send the 
data. Say in Figure A1, task P0 owns first 50 elements (i.e. 0-49) of the distributed array and 
after transposition, the data owned by task P0 is moved to P2 and P3 (P0 sends elements 0-46 
to task P3 and 47-49 to task P2). Similarly P3 sends the last 47 elements to P0, and P2 sends its 
last 3 elements to P0. Thus the programmer has to identify how many receives (MPI_Recv) 
each task has to post, to obtain the corresponding data. Each task should also send the global 
indices of the data to the receiving task. The MPI code would become more complicated to 
handle two-dimensional arrays. In case of GA, the programmer would only have to specify 
the indices of the 2-dimensional array block to be transposed.  

 
 

/************  GA VERSION  *************/ 
#define   NDIM         1 
#define   TOTALELEMS   197 
  
int main(int argc, char **argv) { 
    int dims,chunk,nprocs,me,i,lo,hi,lo2,hi2,ld;    
    int g_a, g_b, a[TOTALELEMS],b[TOTALELEMS]; 
  
    GA_Initialize(); 
    me     = GA_Nodeid(); 
    nprocs = GA_Nnodes(); 
    dims   = nprocs*TOTALELEMS; 
    chunk  = ld = TOTALELEMS; 
  
    /* create a global array  */ 
    g_a = GA_Create(C_INT, NDIM, dims, "array A", chunk); 
    g_b = GA_Duplicate(g_a, "array B"); 
  
    /* INITIALIZE DATA IN GA */ 
    GA_Enumerate(g_a, 0); 
  
    GA_Distribution(g_a, me, lo, hi); 
    GA_Get(g_a, lo, hi, a, ld); 
    // INVERT DATA LOCALLY 
    for (i=0; i<nelem; i++)    b[i] = a[nelem-1-i]; 
    // INVERT DATA GLOBALLY 
    lo2 = dims - hi -1; 
    hi2 = dims - lo -1; 
    GA_Put(g_a,lo2,hi2,b,ld); 
  
    GA_Terminate(); 
} 

/************  MPI VERSION  *************/ 
#define TOTALELEMS 197 
#define MAXPROC 128 
#define MIN(a,b) ((a) < (b) ? (a) : (b)) 
  
int main(int argc, char **argv) { 
    int *a, *b, me, nprocs, i, j, np=0,start=-1,lo2, hi2; 
    int global_idx,local_idx, rem, local_count, position, 

bytes; 
    char *send_buf, **recv_buf; 
    int lo[MAXPROC],hi[MAXPROC], count[MAXPROC]; 
    int nrecv[MAXPROC], nrecv2[MAXPROC], to[MAXPROC],  

elems_per_proc[MAXPROC]; 
    MPI_Status status; 
    MPI_Request request[MAXPROC]; 
 
    MPI_Init(&argc, &argv); 
    MPI_Comm_size(MPI_COMM_WORLD, &nprocs); 
    MPI_Comm_rank(MPI_COMM_WORLD, &me); 
  
    /* distributed array, where each process has 

elems_per_proc elements */ 
    rem = TOTALELEMS; 
    elems_per_proc[0] = MIN(rem, TOTALELEMS/nprocs+1); 
    lo[0]=0; hi[0]=elems_per_proc[0]-1; 
    rem -= elems_per_proc[0]; 
    for(i=1; i<nprocs; i++) { 
       elems_per_proc[i] = MIN(rem, TOTALELEMS/nprocs+1); 
       lo[i]=hi[i-1]+1; hi[i]=lo[i]+elems_per_proc[i]-1; 
       rem -= elems_per_proc[i]; 
    } 
    /* initialize */ 
    a = (int*)malloc(sizeof(int)*elems_per_proc[me]); 
    b = (int*)malloc(sizeof(int)*elems_per_proc[me]); 
    for(i=0; i<elems_per_proc[me]; i++)    

a[i]=elems_per_proc[0]*me+i; 

  0   1   2  49  50   51   52  99 100 101 102 149 150 151 152 196 

P0 P1 P2 P3 

(a) 

196 195 194 147 146 145 144  97  96  95  94  47  46  45  44   0 (b) 

Figure A1: Example of parallel transposing of 1-d array (197 elements) on 4 processors. (a) Distributed 
integer array with 50 elements each, except processor P3 with 47 elements. Array values initialized from 0 to 
196. (b) Final result. 
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    for(i=0; i<elems_per_proc[me]; i++)  b[i]=-1; 
    for(i=0; i<nprocs; i++) nrecv[i]=0; 
  
    /* INVERT DATA LOCALLY */ 
    for(i=0; i<elems_per_proc[me]; i++)  
       b[i]=a[elems_per_proc[me]-1-i]; 
  
    /* identify where to send the data */ 
    lo2 = TOTALELEMS-1-hi[me]; 
    hi2 = TOTALELEMS-1-lo[me]; 
  
    /* find process(es) rank, where data has to be sent */ 
    for(i=0; i<nprocs; i++)  
       if(lo2>=lo[i] && lo2<=hi[i])   
    i=start; np=0; 
    do { 
       nrecv[i]=1; 
       to[np]=i; 
       ++np; 
    }while (hi2>hi[i++]); 
  
    /* count # of elems to be sent for each destination 

processes */ 
    count[0] = hi[start]-lo2+1; 
    if(np>0) { 
       for(i=start+1,j=1; i<start+np-1; i++,j++)  
          count[j]=hi[i]-lo[i]+1; 
       count[np-1] = hi2-lo[start+np-1]+1; 
    } 
  
    /* broadcast the number of recv's for each process */ 
    MPI_Allreduce(nrecv, nrecv2, nprocs, MPI_INT, MPI_SUM, 

MPI_COMM_WORLD); 
  
    /* INVERT DATA GLOBALLY */ 
    global_idx=lo2; local_idx=0; 
    bytes = sizeof(int)*(elems_per_proc[me]+1); 
    send_buf = (char*)malloc(bytes); 
    recv_buf = (char**)malloc(nrecv2[me]*sizeof(char*)); 
  
    /* Post the receive's */ 
    for(i=0; i<nrecv2[me]; i++) { 
       recv_buf[i] = (char*)malloc(bytes); 
  
       MPI_Irecv(recv_buf[i], bytes, MPI_PACKED, 

MPI_ANY_SOURCE, 555, MPI_COMM_WORLD, &request[i]); 
    } 
  
    for(i=0; i<np; i++) { /*pack global idx actual data*/ 
       position = 0; 
      MPI_Pack(&global_idx, 1, MPI_INT, send_buf, bytes, 

&position, MPI_COMM_WORLD); 
       MPI_Pack(&b[local_idx],  count[i], MPI_INT, 

send_buf, bytes, &position, MPI_COMM_WORLD); 
       MPI_Send(send_buf, position, MPI_PACKED, to[i], 

555, MPI_COMM_WORLD); 
       local_idx += count[i]; 
       global_idx = lo2+count[i]; 
    } 
  
    for(i=0; i<nrecv2[me]; i++) { 
       MPI_Wait(&request[i], &status); 
       MPI_Get_count(&status, MPI_INT, &local_count); 
       position = 0; 
       MPI_Unpack(recv_buf[i], bytes, &position, 

&global_idx, 1, MPI_INT, MPI_COMM_WORLD); 
       local_idx = global_idx - me*elems_per_proc[0]; 
       MPI_Unpack(recv_buf[i], bytes, &position, 

&a[local_idx], local_count-1, MPI_INT, 
MPI_COMM_WORLD); 

    } 
 
    MPI_Finalize(); 
} 

 
Figure A2: Parallel implementation of 1-dimensional array transpose: GA version shown on the left and MPI 
version on the right. 

 


